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Exact solution of a generalized ballistic-deposition model
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We study a monolayer deposition model which generalizes both random sequential adsorption and
ballistic deposition: hard disks are dropped vertically and randomly onto a line; they can adsorb on the
line either by direct deposition or after rolling over preadsorbed disks. An exact solution is given for the
gap distribution function and for the density of adsorbed disks. Properties of the system at or close to
the jamming limit are discussed. This generalized ballistic-deposition process leads to formation of con-
nected clusters of all sizes: the time evolution of the cluster distribution is obtained analytically.

PACS number(s): 81.15.—z, 68.10.Jy

I. INTRODUCTION

The adsorption of large molecules, such as latexes and
colloids, on solid surfaces is often an essentially irreversi-
ble process [1-5], i.e., desorption and surface diffusion are
negligible on the time scale of observation. Therefore, a
complete description of adsorption mechanisms must
take into account the transport of the particles from bulk
to the surface, the interaction between adsorbed particles
and bulk particles, and, finally, the subsequent adsorp-
tion. A large variety of forces is generally involved in
each step of these processes: dispersion, electrostatic, hy-
drodynamic, and even external fields such as gravity.

An early, but nontrivial, approach is the widely studied
random-sequential-adsorption (RSA) process [6], which is
defined by a sequence of random placements of hard,
impenetrable particles onto a surface. The geometrical
blocking effects and the irreversible nature of the process
result in the following properties: the structure of the ad-
sorbed configurations are distinct from those of the corre-
sponding equilibrium configurations, except for low den-
sities; in the final state of this process, near the “jamming
limit,” the kinetics follow an algebraic power law [7,8].

Recently, several models have been proposed that in-
corporate some features of the transport mechanisms
[9-14]. When the adsorbing particles are denser than the
solution, gravity forces lead to a significant drift toward
the surface, and, in the limit of very strong field, it is
reasonable to consider the motion as deterministic, i.e.,
the trajectories simply become straight lines. If the parti-
cles do not contact the surface first, they follow the path
of steepest descent on the previously deposited particles.
This process corresponds to the irreversible adsorption in
the limit of a strong external field and is called “ballistic
deposition” (BD).

Most of the previous studies of the BD process were
concerned with the formation of multilayer deposits and
their scaling properties [15]. Recently, Talbot and Ricci
[16] proposed a soluble model of a BD process on an
infinite line in which multilayer deposits are prevented.
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The main features of this model are (i) the jamming-limit
density, pgp()=0.808---, is larger than in RSA,
Prsal ©)=0.747 - - - . These results were obtained by
Solomon [17] and Rényi [18], respectively; (ii) the long-
time behavior is essentially exponential; and (iii) ‘‘res-
tructuring,” that is, the possibility for a trial disk to move
after an initial contact with a preadsorbed disk without
being rejected, contributes to the formation of connected
clusters. Later, Jullien and Meakin [19] performed a
simulation study of the (2+ 1)-dimensional version of this
model, i.e., the deposition of spheres on a plane and ob-
served the same features: (i) a saturation coverage larger
than RSA (©gp( 0 )=0.611 and Oggu( o0 )=0.547), (ii) an
exponential approach to the jamming limit, and (iii) clus-
ter formation. Using methods borrowed from liquid-state
theories, Thompson and Glandt [20] obtained the density
expansion up to third order of the pair-density function,
p'P(r,p), and the adsorption kinetics to the same order.

In this paper, we introduce a generalized version of
this model, in which a tuning parameter ¢ measures the
efficiency of restructuring: for a =0, the RSA model is
recovered, whereas a =1 corresponds to the simple BD
model. In Sec. II, the analytical treatment of the model
in 1+ 1 dimensions is developed, and we obtain the time-
dependent kinetics and gap-distribution functions. In
Sec. III, we focus on cluster formation, which is de-
scribed with analytical expressions for the cluster densi-
ties.

II. THE DEPOSITION MODEL

We consider the deposition of hard disks of diameter o
onto an infinite adsorbing line. The disks are dropped
uniformly at a constant rate k per unit length as in a RSA
process. If, at time 7, the new disk does not encounter
any preadsorbed disk, it adsorbs with a probability p.
Otherwise, the trial disk rolls over the perimeter of a
preadsorbed disk following the path of steepest descent.
Suppose now that there is a gap of length / on the
relevant side of the preadsorbed disk: if / is more than o,
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the new disk can reach the line and is accepted with a
probability p’; if I is less than o, the disk cannot reach
the line and is rejected (no multilayer formation is al-
lowed in this model). Using dimensionless variables
t=okpr, h=I1/0, a=p’'/p, one can see that for a =0,
the model corresponds to the car-parking problem,
whereas, for a =1, we recover the ballistic-deposition
model of Talbot and Ricci [16]. In the limit @ — + oo,
only deposition via rolling is permitted, which results in a
close-packed configuration. The tuning parameter a can
be interpreted as a measure of the efficiency of the re-
structuring due to the rolling mechanism. The interest of
this generalized version of ballistic-deposition model is
that it permits a nonnegligible fraction of those particles
rolling over previously adsorbed particles to be rejected,
which seems to be a reasonable physical assumption for
monolayer formation.

The rolling mechanism leads to the formation of con-
nected clusters of different sizes. Thus, in the generalized
ballistic-deposition model, the gap distribution GT(h,e),
which is the total density of gaps of length 4 at time ¢, is
given by GT(h,t)=G(h,t)+G*(t)8(h), where G (h,t)
denotes the regular part of the gap-distribution function
and G*(¢)8(h) is the singular part at contact correspond-
ing to the finite contribution of all clusters. The time
evolution of GT(h,t) is governed by a rate equation that
takes into account destruction and creation of intervals of
length h. Figure 1 illustrates the two mechanisms by
which these intervals may be eliminated: by direct depo-
sition, if the center of the new particle arrives in the inner
interval of length 4 —1, and by rolling mechanism if the
particle touches the right or left neighbor. Similarly, in-

h+1

FIG. 1. Illustration of the generalized ballistic-deposition
process. The insertion of a falling disk into a gap of length A
happens either if the disk rolls over one of the two adjacent
disks (a) or if the disk directly reaches the surface (b). The disk
diameter is taken as the unit of length.

tervals of length 4 are created from intervals of length
h +1 by rolling mechanism and from intervals of length
h', with h' > h +1, by direct deposition. One obtains for
the regular and singular components of the gap-
distribution function

3Géil,t) =—(h —1+2a)G (h,1)+2aG (h +1,1)
+2 fhtldh'G(hlyt)’ th ’ (1)
BGWD s +1,0+2 [* dw'G D, k<1,
ot h+1
(2)
dG(t) b
— . 3
o =2a [ " dh G k1) (3)
The total-number density of gaps, nZ(z), is given by
nd= [ " dn GTh0), @)

and by using the decomposition of G'(h,?) in a regular
and singular part, it can be written as the sum of contri-
butions from gaps of finite and zero length:

nZ()=ng(t)+nd(1)= fo"" dh G(h,t)+Gt) . (5)

As one gap corresponds to one particle, the number den-
sity p(t)=nl(¢). Hence, except in RSA [¢2=0 and
nd(¢)=0], cluster formation induces the inequality
p(t)>ng(t). Another route to expressing the density p(z)
is to calculate the fraction of the line that does not corre-
spond to gaps:

p()=1= [ *dh hG (h,1). (6)

Finally, p(¢) can be also deduced from the kinetic equa-
tion

P —@(1)= [ " ah(h—1+2a)G (h,1) , ™)
dt 1

where ®(z) is the probability of inserting a new disk at
time ¢.

Introducing the function H,(¢) such that
G (h,t)=exp[—(h —1+2a)t]H,(t) for h=1 and using
Eq. (1), one gets the differential equation

dInH (1)
dt

! a+—1—
t

=2e , (8)

the solution of which is
H, (t)=H(t)e21=¢ ™", 9)

where H(t)=t2exp[—2f(‘)(1—e_“/u)du]=exp[—2y
+2Ei(—t)], where ¥y =0.57721. .. is the Euler constant
and Ei(—1)= ft“’dx exp(—x)/x is the exponential in-
tegral.

The gap-distribution function is then given by

Gr(h’t)ze—-(h‘l)teZa(l—t—e")H(t) , (10)

for h > 1, whereas, for h <1, integrating Eq. (2) and then
Eq. (3), one obtains
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G(h,t)= (1+az’ )e*ht 2a(1—1' -e_‘)H( n,

fdt

(11

G*(1) 2af dt' = — H(’) e2e1=r=e™)

(12)
The short-time expansion of the gap distribution G (h,t)
is

G(h,t)=t24+0(t3) (13)

and does not depend on a, because the initial deposition
is always direct. Properties at the jamming limit
(t — + o0 ) exhibit some differences compared to the RSA
(@ =0) case: the RSA gap distribution is given, when
h—0+, by G(h, 0 )~—2e *In(h), and it thus displays
a  logarithmic  divergence at  contact. For
a>0, G(h,o)~—2e e In(h +2a), and the regular
gap-distribution function G (h, ) remains finite at con-
tact [there is, of course, a singular gap distribution which
is proportional to a8(h)]. G (h, «) is illustrated in Fig. 2
for different values of a.

The number density is obtained from the gap-
distribution function G (h,t) by using Eq. (6):

pi=['artt HUD (1 garerati=r=™ (4

and from Eq. (5), the gap density ng(¢) is given by
nG(t)z fotdt: Ht(; )eZa(l—t’—eftl) . (15)

Figure 3 compares the number density p(z) and gap den-
sity ng(¢) for different values of a, and Fig. 4 displays
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FIG. 2. Regular gap-distribution function at the jamming
limit for various values of a. The curves from top to bottom
correspond to the following sequence: « =0,0.01,0.1,0.2,
0.5,1.0.
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FIG. 3. Time dependence of the number density p(z) and of
the gap density ng(t) for various values of a. The middle curve
(a =0) corresponds to the RSA process: no connected clusters
can appear and then ng(t)=p(z). The curves from middle to
top represent p(¢) and the dashed curves from middle to bottom
represent ng(t) for a =0.1,0.5,1.0,3.0. a =1 corresponds to
the ballistic deposition model of Talbot and Ricci.

their values at the jamming limit. One observes that the
particle density increases with a while the number of
finite length gaps decreases with a. As explained above,
the increasing difference between p(¢) and ng(t) is due to
the formation of clusters, which contributes to p(¢) and
nd(t), but not to ng(¢). From Eq. (14), one obtains the
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FIG. 4. Number density p( ) (upper curve) and gap density
ng( o) at the jamming limit versus a.
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asymptotic behavior of the particle density when ap-
proaching the jamming limit, for 1 <<t << 1/a,

p(w)—p(t)~e2(“—")% : (16)

and for t >>1/a,

e~2m
p(oo)—p(t)~82("_7’)——t— ) 17
Thus, for any @ >0, the approach to saturation is ex-

ponential, whereas the usual power law is recovered for
RSA (a =0),

e %
At short times, the density p(¢) behaves as
p(t)=t —(1—a)t*+3(2a —1)t3+ - - - (19)

and the probability of inserting a new disk can be written
as a density expansion:

®=1—(1—a)p+(L—a—2a%)p?

2
+ EE__.ZE_4_4G3__EQZ_

34 ...
55 ol R (20)

The preceding expansion can be interpreted as follows:
starting with an empty line, the probability is equal to 1
due to direct deposition without exclusion effects. The
linear term represents the possibility of rejecting particles
that fall over isolated particles, i.e., over particles whose
exclusion areas do not intersect themselves (low-density
limit): for a =1, this term vanishes and this is also true
in two dimensions [20]; the quadratic term takes into ac-
count corrections to the first-order exclusion effect for
direct deposition as well as rejection of those particles
that are prevented from reaching the line by rolling
mechanism due to the presence of a nearby preadsorbed
disk. This term is different from zero for a =1, contrary
to the two-dimensional (2D) case for which the first
nonzero term is the cubic one [20].

III. CLUSTER FORMATION

In the generalized ballistic model (for a > 0), the rolling
mechanism leads to formation of connected clusters of
different sizes, contrary to the RSA case (@ =0). Some
preliminary information on the cluster distribution can
be derived from the previous analysis. Let p,(¢) denote
the number density of connected clusters formed by ex-
actly s disks. Then, the particle density is expressed as

+
p(t)= 3 sp(t), (21)

s=1
and the gap density as
+
ng(t)= 3 ps(1) . (22)
s=1

The ratio M (¢)=p(t)/ng(t) can then simply be interpret-
ed as an average number of disks per cluster. Note that

ng(t)=p(t) only for a =0, i.e., for the RSA process. For
various values of a, the time dependence of M(t) is
shown in Fig. 5. As expected, the average number of
disks per cluster increases with increasing efficiency of
the rolling mechanism. In one dimension, the percola-
tion threshold, corresponding to the formation of an
infinite cluster, is only reached when a goes to infinity.

More detailed information on the densities of clusters
ps(t) can also be obtained. However, the mere knowledge
of the gap-distribution functions, G (h,t), G*(¢), does not
permit the calculation of the cluster densities p (z). To
overcome this problem, we introduce higher-order gap-
cluster-gap distribution functions, G (h,h’,s,t), defined as
the number density of pairs of neighboring gaps of length
h and A’ that are separated by a cluster of exactly s disks.
As for the single-gap-distribution functions in the preced-
ing section, we can write rate equations in a closed form
by analyzing destruction and creation of these ‘“gap-
cluster-gap” systems (see Fig. 6); If A > 1 and A’ > 1, any
gap-cluster-gap system labeled by (A,h’,s) can be des-
troyed by direct deposition on the left or right interval or
by rolling mechanism on the two sides of each interval;
conversely, a gap-cluster-gap system (h,h’,s) can come
from a gap-cluster-gap (h'',h’,s) or a gap-cluster-gap sys-
tem (h,h’"’,s) by direct deposition if A" ">h+1 or
h'"">h'+1, or can result from gap-cluster-gap systems
(h +1,h",s), (h,h'+1,s), (h +1,h',s —1), (h,h'+1,5s —1)
by rolling mechanism. Note that for the case s =1, the
creation of a gap-cluster-gap system (A,h’,1) results only
from a single gap of length 2 +A’+1. This gives the fol-
lowing equation for the time evolution of the “gap-
cluster-gap distribution functions:”

3.5 L e e e N N S S S B S S S O
: a=3 |
3 -
25 -
—~ :
= L 4
= -
r
2 H —
L _
1.5 —
| ]
a=0]|
1
1 L | L L L | s | L
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FIG. 5. Time dependence of the average number of disks per
cluster for various values of a. The curves from bottom to top
correspond to ¢ =0,0.1,0.5,1.0,3.0.
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G (h,h',s,t) _
ot

—[k(h)+k(h")]G(h,h',s,t)+ fhildh”G(h",h’,s,t)

+ [ dh"G ("5 0+a[G(h+ 1A 0+G (hh'+1,5,0)]

+a(1—=§,)[G(h+1,h",s —1,0)+G(h,h'+ 1,5 —1,1)]+8,,G(h +h'+1,1), (23)

where §; ; is the Kronecker symbol, G(h +h'+1,t) is the
single-gap distribution for intervals of length A +hA'+1,
and k(h)=h —1+2aif h=1and k(h)=0if h <1.

The number density of clusters of size s can be ob-
tained by integration over all gap-cluster-gap densities

ps(t)= fo"" fo“’ dh dh'G (h,h',s,1) . (24)

The strategy for solving these coupled equations consists
of considering first the situation # > 1 and A’ > 1 with the
substitution G (h,h’,s,t)=e N TH 2T (5 1), the
functions H,(s,?) must then satisfy

O0H,(s,t) — 1
T_ e a+7 Ha(S,t)
+2ae 'H,(s —1,1), s=0, (25)
with the initial condition
H,(0,)=—H, (1)~ 1" | (26)

2a

where H,(t) is given by Eq. (9). Second, for h <1
and h’'21 (respectively for h=>1 and h'<]1),
the form of the gap-cluster-gap distribution function is
given by G (h,h',s,t)=e W ~1T20t (h s 1), [respective-
ly, G(hh',s,t)=e W71%20 g (p' 5 ¢)]. Introducing
h,(s,t) =f(1)dh '"H,(h',s,t), one can express, after some
algebra, the s-cluster density p,(t) as

—4at eﬁ?.at
P = H,(5,0+2——h (.0
t g | 1—e ™ 1
+2 [fare 2 | 2= — || |+ '
fo e [ 5 H Sta k(s
+aha(s—1,t’)], s>1, 27)

where the function h,(s,?) can be determined from the
equation

oh,(s,t)

3 h,(s,t)

., —t
+e~201 [ l—e I (-1_4_(1
t t

=e ! [a-&-l
t

H,(s,1)

+a
t

—, "t
e 2 ‘l_e }Ha(s —1,1)

+e"ha(s-—l,t)], s>1, (28)

with the initial condition

h+1 h'+1

®

h+h'+s

h+1 h'+1

h h
h+h'+s
h+1 h'+1 -
()
o e
/ 7/ / / / / VAVAVAVA
h h’
h+h'+s

FIG. 6. Illustration of the different ways of destruction of a
system formed by two neighboring gaps of length 4 and A’
separated by a connected cluster of exactly s disks (here s =3):
(a) two possibilities of destruction of the gap-cluster-gap system
(h,h',s) by direct deposition, (i) and (ii); (b) two possibilities of
destruction of the gap-cluster-gap system (h,h’,s) by rolling
mechanism with formation of a larger central cluster, (iii) and
(iv); (c) two possibilities of destruction of the gap-cluster-gap
system (h,h',s) by rolling mechanism with an unchanged central
s cluster, (v) and (vi).
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H,(t)
2a

1—e ™!

t

—2at’

h,(0,1)= (29) p.(1)=2a fo’dt' ¢ {ha(s,:')

t,

Integrating Eq. (27) by parts, the s-cluster density can be ,
written as ‘ e 2

ps()=p, _1(t)—p,(¢) (30)
with (31)
| L — L e B LN St B B S B S | 025 ——— s s S S e O B A
ook (a) | - (b) ]
L s=1 4 : s=1 :
0.2+ -
7] 0.15|- s=2 -
) | = L _
< i e L ]
i 0.1+ -
r s=3 1
0.05 i
s=2 4 - 4
s=4 1
s=3 s=5 4
P P S S W S B S S U S— 0 P i | o | P .
6 8 10 0] 2 4 [§] 8 10
t t
0.12 [~ ]
" (c) |
i T
0.1+ —
L s=2 1
L s=1 4
0.08 —
L s=3 7
s B
<,0.06 .
QU -
s=4 7
0.04 -
s=5 b
6.02 -1
4
| 1 | I T | | I 1
0 2 4 [¢] 8 10

FIG. 7. Time dependence of the cluster densities p,(¢) for different values of @ >0 and s. (a) a =0.1, s=1,2,3, (b) a =1,
s=1,2,3,4,5, (c) a =3, s =1,2,3,4,5. Note that the density of monomers p;(¢) has a maximum at a finite value for a =1 and 3 but
not for a =0.1. For a =3, the efficiency of the rolling mechanism leads to a density of dimers larger than the density of monomers at
the jamming limit.
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In the above equation, 5 (¢) denotes the density of cluster
of size strictly larger than s. One checks directly from
Egs. (28)-(31) that the two sum rules given by Egs. (21)
and (22) are satisfied: cf. Appendix A. Also as expected,
J

—2at, \/Ha(tl)
5

V' H,(t,)

2
fo dt, .

oy 2a° t
ps(1) (s—1) fodtle

Figure 7 illustrates cluster formation versus time for
different values of a. At short times, the s-cluster density
ps(t) increases as
a’~ lts

ps(t)~ (33)

We may interpret this result by noting that the first ap-
pearance of a cluster of size s is only possible after s depo-
sitions of disks and by a sequence of (s —1) rolling pro-
cesses [21]. Equation (32) can be also used to derive the
behavior of the s-cluster density at the jamming limit for
asymptotically large clusters (s — + o0 ):

(za)s—l
(s)!

This large-s behavior is very different from that expected
at a percolation threshold and an infinite cluster can only
be obtained in the limit a — o corresponding to a close-
packed  configuration. Interestingly, faster-than-
exponential decays similar to Eq. (34) occur in models of
irreversible filling of a one-dimensional lattice. This ap-
pears to be a general property of 1D irreversible deposi-
tion processes which do not permit cluster-cluster coales-
cence [22].

ps(o0)~ (34)

IV. CONCLUSION

In this article, we have presented a solvable model of
monolayer formation, which generalizes both random
sequential adsorption and ballistic deposition: gap-
distribution functions and the density of adsorbed disks
are obtained. This generalized ballistic-deposition pro-
cess involves formation of connected clusters of all sizes:
by means of higher-order distribution functions, the time
evolution of the cluster distribution is also derived. In
one dimension, an infinite cluster cannot be formed for a
finite value of a and the percolation threshold is not
reached.
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the s-cluster densities p () vanish for s >1 when a =0
(RSA).

After some algebra (the details are given in Appendix
B), an explicit solution for g,(¢) can be obtained:

-t

—ty o
—e Z)S 1

t
Z(e

s—1

J_ 1 20(—1)y "1 (e Thy e Ty

; —2at,  —(j+1),
2 j+1—2a
o2 Tty
- ) 32
|7 jt2z—2a (32

f
Théorique des Liquides is Unité de Recherche Associée
No. 765 au Centre National de la Recherche Scientifique.

APPENDIX A: SUM RULES

The expression for the gap density is easily recovered
thanks to successive cancellation in the summation over s
[compare Eq. (22) with Egs. (30) and (31)]. One finds

—2at’ —2at

h,(0,t' )+ £ H,(0,t")

=2a fotdt’ ¢

(A1)

Combining Eq. (A1) with the initial conditions given in
Egs. (26) and (29), we indeed obtain Eq. (15).

The number density p(z) is the sum of the contribu-
tions of clusters of all sizes; using Eqs. (21) and (31) leads

to
a(i,t)J .

*2 t —Zat

p()=2a [di 2 [ (i,0)+%

(A2)
Let U (t) be defined as
2e —2at
U(t)= Jit)+ H,(i,t) | . (A3)
This function obeys the following equation:
du@) _e*
=2 1-U)] . A4
dr . [1 ()] (A4)

With the initial condition U(0)=1, Eq. (A4) has the
unique solution U(#)=1. Since the number density p(?)
can be reexpressed as

-

>

Za(l—t'—e

pty=[ar L l +2aU(1")

(AS)

one then recovers Eq. (14).
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APPENDIX B: CLUSTER DENSITIES dA,(s,t) _
—_—= tA,(s —1,2)
dt @ 4 ’
To obtain a solution for the s-cluster density p,(¢), one VH (De 2t
introduces more adapted functions +a a [B,(s —1,0)—B,(s,8)],
(B3)
2 e 2 dB,(s,t)
Aa(S,t)— VHa(t) ha(S,t)+ Ha(S,t) (Bl) -—‘:h—-=2(1e_tBa(s-—1,t) 5 (B4)
with the initial conditions Aa(O,t)=\/H,,(t)/(at) and
and B,(0,1)=e?*~V!/q. Thus, the density of clusters of size
s is given by
2H,(s5,1) (g ‘/H (&)
Ba(s,t)=——ﬂ)— (B2) ps ()= fo dt'ae 2" =2 [ 4,(s—1,t")
—A,(s,t')], (B5)
By using Egs. (25) and (28), one derives where A,(s,t) is
J
_ t —t 4 —t i1 —t V'H,
A, (s,t)=a" fo dtje fo diye 2--- fo 1, ot
t _ 73 — . \/H ( )
4 Za f drje " foldtze ho.. fo 'dtie t" ““[B,(s —i,t;)—B,(s +1—i,z;)] , (B6)
i=1 i
with
st -1, rh -1, i1 —t e(za_l)t‘
B,(s,1)=(2a) fo dt,e fo dtye 2 fo dtje " =— (B7)
Using the change of variable y =a (1—e ~’) in Eq. (B7), one finds
_ _u_)__‘ :
B, (s.y)=2" [’ dy’ oy Ba0y), (B8)
and performing the same procedure in Eq. (B6), one obtains after inserting Eq. (B8)
— 2 y ' o,y —1 '
A= "1y Jlay' v =y 4,009
,y ') _ _
+fy ,B (0 f dy”B (O,y”)[(s_l)(y 2yll+y )s _(y 2y”+y ).Y 1] (B9)

Changing back the variable y to ¢ and combining Egs. (B5) and (B9) leads finally to Eq. (32).
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